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Abstract  

A key component in creating high-performance, sustainable materials is the combination of 
biopolymers with synthetic networks. Alginate-acrylic hybrid hydrogels with self-healing properties 
are thoroughly examined in this review. These semi-synthetic systems, in contrast to traditional 
hydrogels, greatly increase their functional lifespan in demanding applications by using dynamic 
non-covalent interactions to repair structural integrity after mechanical damage. We draw attention 
to their dual-use in (i) environmental remediation, where they serve as regenerable adsorbents for 
the removal of organic and heavy metal pollutants, and (ii) sustainable agriculture, where they 
serve as controlled-release fertilizer carriers and stimuli-responsive soil conditioners. Through 
repeated cycles of dehydration and rehydration, these materials improve soil aeration, increase 
water retention, and reduce nutrient leaching, all of which are critically inspected in this review. 
Finally, we suggest a roadmap for future research, focusing on the standardization of healing 
protocols and the development of energy-efficient, green synthesis routes to facilitate large-scale 
industrial adoption. 
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1. Introduction  

Hydrogels, three-dimensional hydrophilic polymer networks, have emerged as pivotal materials in advancing 
sustainable technologies for water management and agriculture [1, 2, 3]. Among them, self-healing hydrogels 
(SHHs) represent a transformative class of materials capable of autonomously repairing mechanical damage, 
thereby extending their functional lifespan and reliability in dynamic environments [4, 5, 6]. This intrinsic 
repair capability is primarily governed by dynamic reversible bonds such as ionic interactions, hydrogen 
bonds, and dynamic covalent bonds, which enable the restoration of structural integrity after fracture [7, 8, 
9]. Recent research has strategically focused on combining natural and synthetic polymers to create hybrid 
hydrogels that synergize the advantages of both components [10, 11, 12]. Natural polymers, like alginate (see 
Scheme 1) derived from marine algae brown seaweed, offer exceptional biocompatibility, biodegradability, 
and eco-friendliness, along with ion-responsive gelation properties [13, 14, 15]. In contrast, synthetic acrylic 
polymers (e.g., polyacrylic acid, Scheme 2) provide mechanical robustness, high water absorbency, and 
tunable physicochemical properties [16, 17, 18]. The integration of alginate with acrylic polymers results in 
semi-synthetic networks that exhibit not only enhanced mechanical performance but also inherent self-
healing functionality [19, 20, 21]. While numerous reviews cover self-healing polymers or alginate-based 
materials broadly, a dedicated, critical synthesis focusing specifically on the design principles, performance 
trade-offs, and application-driven optimization of alginate-acrylic hybrid hydrogels is lacking. This review aims 
to fill that gap by moving beyond general descriptions to a detailed analysis of how molecular interactions 
translate to macroscale functionality in environmentally relevant settings. Furthermore, the application 
potential of these hybrid systems in environmental remediation (e.g., water purification via pollutant 
adsorption) and sustainable agriculture (e.g., as superabsorbent soil conditioners and controlled-release 
fertilizer carriers) warrants a focused and updated evaluation [22, 23, 24]. Therefore, this review aims to 
critically examine the current state of knowledge regarding alginate-acrylic hybrid hydrogels with 
autonomous self-healing properties. Specifically, it will: 

i. Analyse the design and synthesis strategies for creating these hybrid networks. 
ii. Elucidate the molecular and supramolecular mechanisms underpinning their autonomous self-healing 

behaviour. 
iii. Evaluate their key functional properties, including swelling, mechanical strength, and stimuli-

responsiveness. 
iv. Assess their application potential in water treatment and smart agriculture, with an emphasis on 

controlled-release systems. 
v. Identify current challenges and future research directions to optimize their performance and scalability. 

By consolidating recent advances (primarily from the past five years) and providing a mechanistic 
understanding, this review seeks to serve as a foundational resource for researchers developing next-
generation, durable, and environmentally adaptive hydrogel materials [25, 26, 27]. 

2. Alginate-Acrylic Hybrid Hydrogels: Synthesis, Mechanisms, and Functional 
Properties 

2.1. Synthesis and Network Design:  

The fabrication of alginate-acrylic hydrogels with self-healing properties typically exploits a dual-network 
strategy [28, 29, 30]. This strategy synergistically combines the ionotropic gelation of alginate (see molecular 
structure in schemes 1 and 2) and the free-radical polymerization of acrylic monomers [31, 32, 33]. The main 
synthesis pathways, along with their comparative advantages and limitations, are summarized in Table 1. 

The selection among synthesis methods represents a direct trade-off between simplicity and precise 
control [51]. The one-pot approach is favored for its efficiency and its ability to create intimately mixed 
networks that facilitate dynamic bonding [52, 53]. In contrast, the sequential method offers superior 
tunability, enabling researchers to first establish a robust PAA scaffold before incorporating reversible ionic 
crosslinks, which is advantageous for achieving targeted mechanical properties [54, 55]. While grafting 
provides a distinct pathway for molecular-level integration, it may demand greater synthetic expertise [56]. 
Ultimately, the optimal pathway is fundamentally determined by the target application's (e.g., in water 
purification for heavy metal adsorption or in agriculture for slow-release fertilizers)  requirements for 
mechanical strength, swelling kinetics, and healing speed [57, 58, 59]. Overall, the choice of synthesis method 
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directly and critically influences the hydrogel's architecture, swelling behavior, and self-healing efficiency [60, 
61]. 
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Scheme 1. (a) Compositional structure of alginic acid, (b) structures of the α - L-guluronate(G) and β-D-
mannuronate(M) residues of which it is composed, and (c) schematic representation of the residue 

sequence 

 

Scheme 2. Molecular structure of poly(acryli acid) 

 
2.2. Mechanisms of Autonomous Self-Healing 

The autonomous self-healing capability in alginate-acrylic hydrogels at room temperature is attributed to the 
synergistic action of multiple dynamic, non-covalent interactions that can spontaneously reform after 
damage.  This capability primarily relies on three interlinked mechanisms operating in concert: ionic 
coordination, hydrogen bonding, and polymer chain interdiffusion and entanglement [62, 63, 64]. 
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Table 1. Critical comparison of synthesis methods for alginate-acrylic hydrogels. 

 
2.2.1. Ionic Coordination 

The primary reversible bonds are the ionic crosslinks between alginate's carboxylate groups and divalent 
cations (e.g., Ca²⁺) [65]. Upon fracture, these coordinate bonds can break. However, in the hydrated state, 
the mobility of polymer chains and free ions allows for the diffusion of alginate chains and cations across the 
cut interface [66, 67]. Given time and contact, the egg-box complexes can re-form, re-establishing the ionic 
network (in scheme 3) [68, 69, 70]. The kinetics of this ion exchange and re-coordination are critical for 
healing speed [71].  

 
Scheme 3. Ionic Crosslinking and Re-coordination of alginate via Ca²⁺ Complexes  

2.2.2. Hydrogen Bonding 

Both alginate and PAA are rich in carboxyl (-COOH) and hydroxyl (-OH) groups [72]. These functional groups 
form an extensive, cooperative network of hydrogen bonds (see scheme 4) throughout the hydrogel matrix 

Disadvantages Advantages Key Description Synthesis Method 

Difficult to independently 
control the kinetics and 
density of each network [37]. 
Risk of phase separation if 
reaction conditions are not 
optimized [38, 39]. 

Simplicity and speed [34]. 
Promotes homogeneous 
interpenetration of networks 
from the outset [35]. High 
potential for creating dense, 
cooperative interactions [36]. 

Sodium alginate, acrylic acid 
monomer, an initiator (ammonium 
persulfate, APS), and a covalent 
crosslinker 
(N,N′-methylenebisacrylamide, MBA) 
are mixed. Divalent cations (such as 
calcium ions, Ca²⁺) are then added to 
trigger ionic gelation concurrently 
with free-radical polymerization. 

One-Pot, Simultaneous 
Network Formation 

More time-consuming and 
involves multiple steps [43]. 
Achieving deep and uniform 
penetration of alginate into 
the pre-formed PAA network 
can be challenging [44, 45]. 

Allows precise, independent 
control over each network's 
properties (e.g., crosslink 
density of PAA) [40]. Ensures a 
well-defined, interpenetrating 
structure [41, 42]. 

1. A covalently crosslinked PAA 
network is synthesized first. 
2. The pre-formed network is soaked 
in an alginate solution.  
3. Ionic crosslinking (e.g., with Ca²⁺) is 
performed. 

Sequential Network 
Formation 

Synthesis can be complex 
[48]. May limit the mobility 
of alginate chains, potentially 
impairing self-healing driven 
by chain diffusion [49, 50]. 

Creates strong covalent 
linkages between components, 
potentially enhancing 
mechanical integrity [46]. 
Unique architecture with 
alginate as a backbone [47]. 

Acrylic monomers are polymerized 
directly from active sites on the 
alginate backbone, creating covalent 
grafts. The graft copolymer can then 
be ionically crosslinked. 

Graft Copolymerization 
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[73, 74]. Hydrogen bonds are dynamic; they can break under stress and readily re-form when the damaged 
surfaces are brought back into contact [75, 76]. This mechanism is particularly effective in contributing to the 
initial stages of adhesion and healing [77, 78]. The role of hydrogen bond density and cooperativity has been 
extensively studied [79]. 

 

Scheme 4. Schematic of the reversible hydrogen-bonding network between alginate and PAA chains, 
facilitating self-healing 

2.2.3. Chain Interdiffusion and Entanglement 

The viscoelastic nature of the swollen polymer network allows for the interdiffusion of polymer chains across 
the fracture surface upon contact (see the diffusion process in scheme 5) [80, 81]. This physical 
entanglement, coupled with the reformation of ionic and hydrogen bonds, leads to the gradual recovery of 
mechanical strength [82, 83, 84]. Chain mobility, governed by water content and crosslink density, is a key 
parameter [85]. The healing efficiency, often quantified as the percentage recovery of tensile strength, 
elongation, or toughness, in these systems, can exceed 90% without any external stimulus, which is a key 
advantage for practical applications [86, 87, 88]. The healing kinetics and final strength depend on factors 
such as the density of reversible bonds, water content (plasticizing effect), polymer chain length, and mobility 
[89, 90, 91]. 

 

Scheme 5. Schematic diagram of the diffusion process at the polymer/polymer interface (a process of 
entanglement establishment) 

2.3. Key Functional Properties 

The hybrid nature of these hydrogels results in a set of key functional properties that are both tunable and 
deeply interconnected. These properties,  swelling and water retention, mechanical robustness, and stimuli-
responsiveness  collectively determine the material's performance and suitability for specific applications. 
Each of these critical attributes is explored in detail below. 
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2.3.1. Swelling and Water Retention 

These hydrogels exhibit significant pH-dependent swelling behavior due to the ionization of carboxylic groups 
on PAA and alg [92, 93, 94]. At low pH, the -COOH groups are protonated, leading to reduced electrostatic 
repulsion and lower swelling. As pH increases, the groups deprotonate to -COO⁻, increasing repulsion and 
water uptake dramatically [95, 96]. This property is crucial for applications like controlled release, where 
release rates can be modulated by environmental pH [97, 98, 99]. 

2.3.2. Mechanical Robustness 

The dual-network structure often results in a favorable balance of strength and elasticity [100, 101]. The 
alginate network provides elasticity and toughness through reversible ionic crosslinks, while the covalently 
crosslinked PAA network contributes to mechanical rigidity and load-bearing capacity [102]. Properties like 
compressive modulus, tensile strength, and elongation at break can be tailored by varying the polymer ratios 
and crosslinking densities [103]. 

2.3.3. Stimuli-Responsiveness 

Beyond pH, the hydrogels are sensitive to ionic strength [104]. The presence of monovalent ions (e.g., Na⁺, 
K⁺) can exchange with Ca²⁺ in the egg-box structures, potentially weakening the network and triggering 
swelling or degradation, which can be used to control the release of encapsulated agents [105]. Recent 
formulations also explore temperature or redox responsiveness by incorporating additional functional 
monomers [106]. 

2.4. Applications in Environmental and Agricultural Sectors 

Alginate-acrylic hydrogels are promising sustainable materials due to their synergistic combination 
of autonomous self-healing, high absorbency, and stimuli-responsiveness. This multifunctionality ensures 
durability, efficiency, and intelligent operation in dynamic applications, particularly in environmental 
remediation and smart agriculture. Their growing potential is reflected in increasing research and patent 
activity [107].  
 

2.4.1. Water Purification 

The anionic nature of the hydrogel network (from alginate and PAA) provides active sites for adsorbing 
cationic pollutants such as heavy metal ions (Pb²⁺, Cd²⁺, Cu²⁺) and organic dyes through electrostatic 
interactions and complexation [108]. The self-healing property ensures that the adsorbent material can 
withstand physical wear and tear in dynamic water treatment systems, potentially extending its operational 
life and reducing maintenance needs [109, 110]. For instance, recent work demonstrated a self-healing 
alginate-PAA hydrogel bead that could be reused for multiple adsorption-desorption cycles for methylene 
blue removal with minimal capacity loss [111]. Field-scale studies are beginning to validate these laboratory 
findings [112]. 
 

2.4.2. Sustainable Agriculture 

2.4.2.1 Water Reservoir 
When incorporated into soil, these hydrogels absorb and retain large volumes of water during 

irrigation or rainfall, then release it slowly during dry periods [113]. This reduces water stress on plants and 
decreases irrigation frequency, which is vital in arid regions [114]. The self-healing feature is critical here, as 
it allows the hydrogel to recover from compression and dehydration-rehydration cycles in the soil matrix, 
maintaining its water-holding structure over time [115, 116, 117]. 

2.4.2.2 Controlled-Release Fertilizer (CRF) Carriers 
Nutrients (e.g., N, P, K) or micronutrients (e.g., Fe, Cu, Mn) can be loaded into the hydrogel matrix 

[118]. Their release is controlled by diffusion through the swollen network and can be triggered by changes 
in soil moisture, pH shifts caused by root exudates, or microbial activity [119]. This targeted delivery improves 
nutrient use efficiency, minimizes leaching losses, and reduces environmental pollution from fertilizer runoff 
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[120]. Patents have been filed for such intelligent delivery systems, highlighting their commercial potential 
[121]. Recent work integrates sensors for real-time nutrient monitoring [122]. 

2.4.2.3 Soil Structure Improvement  
Hydrogels significantly enhance soil quality through multiple interconnected mechanisms. Their ability 

to undergo repeated swelling and de-swelling cycles improves soil aeration and porosity by creating and 
stabilizing macropores within the soil matrix [123]. This improved structure facilitates better gas exchange, 
enhances water infiltration, and reduces soil compaction, thereby promoting healthier and more extensive 
root growth [124]. Furthermore, the improved moisture retention and porous habitat foster 
increased microbial activity, enriching the soil microbiome and accelerating nutrient cycling processes 
essential for plant health [125]. In addition to modifying soil structure, hydrogels play a crucial role in soil 
aggregation and erosion control. The hydrogel particles act as binding agents, adhering to soil particles and 
promoting the formation of stable soil aggregates [126]. This aggregation enhances soil cohesion, increases 
surface roughness, and improves resistance to both water and wind erosion. By stabilizing the topsoil, 
hydrogels help prevent nutrient leaching and loss of fertile soil, contributing to sustainable land 
management. The longevity and stability of these benefits are often enhanced in self-healing hydrogels, 
which can maintain their structural integrity and functionality through repeated environmental stresses 
[127]. 

3. Conclusions and Future Perspectives 

3.1. Conclusions 

This review has critically examined the development, mechanisms, and applications of semi-synthetic 
hydrogels based on alginate and acrylic polymers with autonomous self-healing capabilities. These hybrid 
systems successfully combine the biocompatibility, biodegradability, and ion-responsive gelation of natural 
alginate with the mechanical robustness, high water absorbency, and tunability of synthetic acrylic polymers. 
The autonomous self-healing property, primarily driven by dynamic reversible bonds including ionic 
coordination, hydrogen bonding, and, in advanced formulations, dynamic covalent bonds, enables the 
restoration of structural integrity after damage, significantly extending the functional lifespan of the material. 
Key design principles involve tailoring the alginate-to-acrylic polymer ratio, selecting appropriate crosslinking 
strategies (dual ionic-covalent networks), and controlling the polymerization conditions to optimize swelling 
behavior, mechanical strength, and self-healing efficiency. The resulting hydrogels exhibit stimuli-responsive 
behavior (especially to pH and ionic strength), making them "smart" materials for advanced applications. In 
environmental remediation, these hydrogels show promise for water purification through the adsorption of 
pollutants and heavy metals. In sustainable agriculture, they function as superabsorbent soil conditioners 
and controlled-release carriers for water and nutrients, potentially reducing irrigation frequency and fertilizer 
leaching. Their self-healing nature ensures durability under cyclic hydration and mechanical stress in soil. 

3.2. Future Perspectives 

Despite significant progress, several challenges and opportunities for future research remain: 

i. Healing under Complex Conditions: Most studies demonstrate healing under ideal, laboratory 
conditions. Future work should quantify healing efficiency under realistic environmental stresses (e.g., 
varying soil pH, microbial activity, freeze-thaw cycles). 

ii. Mechanistic Depth: Advanced in situ characterization techniques, such as in-situ FTIR, Raman 
spectroscopy, or small-angle X-ray scattering (SAXS), should be employed to observe bond reformation 
dynamics in real-time during the healing process. Fundamental studies on alginate interactions with 
various cations are needed to optimize healing efficiency. 

iii. Multi-Stimuli Responsiveness: Designing hydrogels that respond to multiple triggers (e.g., pH, 
temperature, enzymes, or redox potential) could enable more precise control over healing and release 
profiles for targeted applications. Research should explore alginate derivatives with enhanced 
functionality, guided by previous work on natural polymer modifications. 

iv. Scalability and Eco-Footprint: Developing greener synthesis routes using water-based systems, 
renewable initiators, and energy-efficient processes is crucial for large-scale, cost-effective production. 
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The end-of-life fate of these semi-synthetic materials, including their complete biodegradation 
pathways, requires thorough investigation. 

v. Expanded Application Horizons: Beyond agriculture and water treatment, these hydrogels hold potential 
in biomedical engineering (e.g., self-healing wound dressings, drug-eluting implants) and soft robotics 
(durable, hydratable actuators). Exploration into loading and controlled release of micronutrients, 
pesticides, or beneficial microbes for precision agriculture represents a promising frontier. Alginate-
based delivery systems show particular promise for controlled release applications. 

vi. Standardization of Evaluation: The field would benefit from standardized protocols for reporting self-
healing efficiency (e.g., recovery of tensile strength, toughness) and release kinetics to allow direct 
comparison between different material systems. 

By addressing these challenges, the next generation of alginate-acrylic self-healing hydrogels can 
transition from promising laboratory prototypes to robust, sustainable, and intelligent materials capable of 
addressing critical global challenges in environmental sustainability and food security. 
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