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Abstract: Quantum chemistry plays a crucial role in advancing

fundamental understanding of chemical processes and driving
innovation in energy, medicine, and materials science. Recent
progress in quantum computing has opened new possibilities
for molecular simulations that are beyond the practical limits
of classical approaches. Academic studies have demonstrated
hybrid Density Functional Theory (DFT) and Variational
Quantum Eigensolver (VQE) benchmarks on small transition-
metal systems, such as iron porphyrin and heme analogues,
using current noisy intermediate-scale quantum (NISQ)
hardware. Although full-scale simulations of complex
biological systems such as the complete Cytochrome P450
(CYP450) active site remain a long-term goal due to limitations
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in qubit numbers, coherence times, and error correction, the
underlying methodologies are now well established. At
present, quantum chemistry applications in drug discovery
remain largely experimental, and widespread practical medical
impact is expected to require further technological advances
over the next 5-10 years. Nevertheless, quantum software
and algorithm development for chemical applications is
progressing rapidly. This perspective summarizes recent
advances in quantum computing algorithms, hardware, and
software relevant to chemistry, and critically discusses the
remaining challenges and opportunities for applying quantum
computing to chemical problems, with particular emphasis on
drug discovery and development.
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Introduction

Quantum mechanics provides the fundamental framework for describing matter and
energy at atomic and subatomic length scales, where classical physics is no longer adequate.
At these scales, particles exhibit wave—particle duality, quantized energy levels, and
probabilistic behavior, phenomena that are successfully captured by the mathematical
formalism of quantum theory [1,2]. Rather than following deterministic trajectories,
microscopic systems are described by wavefunctions whose measurable properties are
obtained statistically through repeated observations.

Quantum chemistry applies the principles of quantum mechanics to chemical systems
in order to describe electronic structure, chemical bonding, spectroscopy, and reaction
dynamics. Established computational methods such as Hartree—Fock theory, density functional
theory (DFT), and post—Hartree—Fock approaches have enabled accurate predictions for a wide
range of molecular properties [3,4]. However, the computational cost of these methods
increases rapidly with system size, particularly for strongly correlated systems such as
transition-metal complexes, metalloenzymes, and excited-state processes. As a result,
practical simulations often rely on approximations that can limit predictive accuracy [5,6].

Quantum computing offers a fundamentally different approach to molecular simulation
by representing electronic wavefunctions directly on quantum hardware. Unlike classical bits,

quantum bits (qubits) exploit superposition and entanglement, allowing quantum computers
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to encode and manipulate many-body quantum states more naturally [11,12]. This has
motivated the development of hybrid quantum—classical algorithms, such as the Variational
Quantum Eigensolver (VQE), which are designed to operate on near-term noisy intermediate-
scale quantum (NISQ) devices [15,18].

While quantum computers are still in an early stage of development, proof-of-concept
studies have demonstrated their potential for quantum chemistry applications, including small-
molecule simulations and transition-metal model systems [16-18]. These advances suggest
that quantum computing may eventually complement classical electronic-structure methods,
particularly in areas where strong electron correlation limits the accuracy of conventional
approaches. In this context, quantum computing is increasingly viewed as a promising tool for
molecular modeling and, in the longer term, for applications in drug discovery and
development [19-21].

Classical computers: Classical computers operate using bits, which can be either a 0 or 1.

They process information step by step using algorithms, with each bit independent from the
others. This makes them reliable and well-suited for most everyday tasks, but they can become
slow when solving highly complex problems.In a classical computer, the bit is the most basic
unit of information. Each bit can exist in only one of two states: 0 (off/low voltage) and 1
(on/high voltage) as shown in Figures 1 and 2. These bits are the building blocks of all digital
operations [7-8]. Here's the role they play in classical computer operation:

1. Information Representation

a. Numbers, text, images, and even videos are ultimately broken down into
sequences of bits (binary code).
b. For example, the letter A in ASCII is represented as 01000001.

2. Data Processing

a. Bits flow through circuits made of transistors (tiny switches).
b. Logic gates (AND, OR, NOT, etc.) use bits as inputs to produce outputs,
enabling arithmetic operations, comparisons, and decision-making.

3. Memory and Storage

a. Bits are stored in memory cells (RAM, hard drives, SSDs).
b. Each cell records a 0 or 1, and groups of bits form larger units like bytes (8
bits).

4, Communication

a. Bits are transmitted as electrical signals, light pulses (in fibre optics), or radio
waves for data transfer between systems.

5. Deterministic Operation
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At any point, a bit has a definite state (either 0 or 1).

b. This deterministic nature makes classical computers predictable and reliable but
also limits their ability to handle extremely complex problems compared to
quantum computers.

Bits are the foundation of classical computing, serving as the universal language that
allows computers to represent, process, store, and transmit all kinds of information. In classical
computing the bits of binary are represented by 1 and O. Let us consider there is a two-bit
space to represent four combinations. Suppose it is a three-bit space we can represent 8
combinations. Hence there is n-bit space, we can represent 2" combinations. But to change
the states of the data from 00 to 10 as a sequence of operations (00, 01, 11, 10) the

conventional process required four (04) clock pulses [9,10].
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Figure 2. Low and High Conventional data representations

Quantum computers: Quantum computers on the other hand, use qubits. Unlike bits,

qubits can exist in a superposition of 0 and 1 at the same time. Qubits also interact through a
property called entanglement, which allows them to share information and influence one
another In a quantum computer, the basic unit of information is the qubit (quantum bit). While
it serves a similar purpose to a classical bit, its behaviour is very different because it is
governed by the principles of quantum mechanics. In classical computing, representing all
possible configurations requires sequential processing and large memory resources, leading to

increased computational time and storage demands for complex problems. In Quantum
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computing to represent the data in qubits we are using one fundamental technique, that is
superimposition [11,12]. Here a quantum state is represented as a linear combination of
conventional computing states. The following diagram shows the basic representation of

Qubits 0 and 1 as shown in Figures 3 and 4.
1

o

Figure 3. Quantum bit Representation
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Figure 4. Quantum bit combination Through superimposition

To represent the combination of these two-bits that is (00, 01, 11 and 10)
representation in the perspective of quantum computing is, suppose we represent the same
thing in the layered structure [12,14]. That is at the same time or instinct all the combinations
of 2-bits are possible as shown in Figures 5 and 6.

0
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Q

Figure 5. Two-dimensional view of layer structure
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Figure 6. Multi-dimensional view of layer structure

Fundamental Concepts of Quantum Computing

1. Information Representation

a) A classical bit can only be 0 or 1.
b) A qubit can exist in a superposition of both states at once.
c) Mathematically:|y)=al0)+p|1)

where a and B are probability amplitudes with |a|>+|BI?=1

2. Parallelism in Computation

a) A system of n qubits can represent 2" states simultaneously.
b) This parallelism allows quantum computers to process huge amounts of information,
useful for tasks like optimization, cryptography, and molecular simulations.

3. Entanglement for Correlation

a) Entanglement links qubits so that the state of one instantly affects the state of
another, even across distance.

b) This correlation is stronger than anything achievable with classical bits, enabling
faster problem-solving and secure communication.

4. Quantum Interference

a) Quantum algorithms rely on interference to amplify correct outcomes and cancel
wrong ones.
b) This “steering” of probabilities gives quantum algorithms their efficiency advantage.
5. Probabilistic Nature

a) When measured, a qubit collapses to either 0 or 1 with probabilities |al? and |B|?

b) Before measurement, qubits hold multiple possibilities, which is the source of

quantum computational power [13,14,15].
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Qubits allow quantum computers to store and process information in ways far beyond
classical bits. Through superposition, entanglement, and interference, qubits make it possible
to solve problems that would take classical computers millions of years. Because of these
features, quantum computers can explore many possible solutions simultaneously instead of
sequentially as shown in Figure 7 and comparison of bits vs qubits as shown in Table 1. This
parallelism is what gives them the potential to solve certain types of problems such as drug

discovery, cryptography, and optimization much faster than classical computers [13,14].

Quantum Computing

Information Parallelism

Quantum
Representation in Computation Interference
: < 23

Classical Qubit
A classical bit A system of n qubits can Quantum algorithms rely on
can only be 0 or1 represent 27 states interference to amplify
A bit isti simultaneously correct outcomes and

Qrion can s> i cancel wrong ones
a superposition of
both states at once Quan: Probabilistic Nature

lo|/|
Entanglement — | 0|1
for Correllation IB' =

e When measured, a qubit
in efectitar propomies collapses to either Oor 1
with certain probabilities

Figure 7. Transformation of conventional to quantum computing

Table 1. Classical Bit vs. Quantum Bit (Qubit): Feature-by-Feature Overview

Feature Classical Bit Quantum Bit (Qubit)
Basic state EitherOor 1 Can be 0, 1, or a superposition of both
Representation  Binary values (0 = off, 1 = on) Quantum state
Parallelism Represents one state at a time Represents many states simultaneously
Correlation Independent unless Can be entangled (strongly correlated)
Computation programmed Probabilistic, uses interference to find solutions
Storage Deterministic, step-by-step 1 qubit stores a combination of 0 and 1
Scalability 1-bit stores either 0 or 1 (more information capacity)
Measurement  n bits = n pieces of information n qubits = 2n2”n states simultaneously
Technology Directly reveals stored value Collapses to 0 or 1 with certain probabilities
Examples of Transistors, silicon circuits Superconductors, trapped ions, photons, etc.
use Word processing, web browsing, Quantum simulation, cryptography,
standard computation optimization, drug design
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Computational Framework

The quantum-enhanced drug discovery workflow integrates classical electronic-
structure methods with near-term quantum algorithms [15,16]. Initially, biologically relevant
targets such as enzyme active sites or ligand—-receptor complexes are identified and pre-
processed using classical techniques, including molecular docking, molecular dynamics, and
density functional theory (DFT), to generate optimized geometries and representative
conformations. From these calculations, a chemically meaningful active space is constructed
by selecting orbitals with significant deviation from full or empty occupation, typically guided
by automated approaches such as atomic valence active space (AVAS) selection or orbital
entanglement measures [35,36]. The resulting second-quantized electronic Hamiltonian is
mapped onto qubits using standard fermion-to-qubit transformations (e.g., Jordan—-Wigner or
Bravyi—Kitaev mappings), with symmetry exploitation employed to reduce qubit counts.
Ground- and low-lying excited-state energies are then evaluated using hybrid quantum-
classical algorithms, primarily the Variational Quantum Eigensolver (VQE) with chemically
motivated or adaptive ansatze. Quantum circuits are executed on simulators and available
noisy intermediate-scale quantum (NISQ) hardware with appropriate error-mitigation
strategies. Finally, quantum-derived energies and wavefunctions are validated against classical
high-level methods and reintegrated into the drug discovery pipeline for ligand ranking,

reaction-barrier estimation, and metabolism prediction [31,34].

Drug Discovery Target and Computational Objective

The biological target is defined as a chemically relevant subsystem, such as an enzyme
active site or ligand—receptor binding pocket, extracted from experimental crystal structures
(resolution < 2.5 A) or high-quality homology models. The primary computational objectives
include prediction of relative binding energies (AE or AG), spin-state energetics, and reaction
barriers (AE+) with a target accuracy of ~1 kcal'mol-1, which is typically required for

chemically meaningful ranking of drug candidates.

Classical Pre-Screening and Model Preparation

Initial structure preparation and conformational sampling are performed using classical
molecular docking and molecular dynamics (MD) simulations. MD trajectories of 50—-100 ns are
generated to identify representative conformations of the binding site. Geometry optimizations
of the chemically active region are carried out using DFT (e.g., B3LYP or PBEO functionals with
a double-C or triple-C basis set), providing reference orbitals and electron densities for

subsequent quantum calculations. QM/MM partitioning is applied where the quantum region

314



Scientiae Radices, 4(4), 307-325 (2025)

typically contains 50—150 atoms, while the remaining protein environment is treated classically
[32].

Active-Space Construction for Quantum Simulation

Selection of the active space is guided by quantitative criteria derived from classical
electronic-structure calculations. Orbitals with natural orbital occupation numbers deviating
significantly from 2.0 or 0.0 (typically >1.98 or <0.02 excluded) are prioritized. In practice,
orbitals with occupations in the range of ~0.02-1.98 are considered active. Automated
approaches such as the Atomic Valence Active Space (AVAS) method or orbital entanglement
analysis (based on single-orbital entropy values >0.1) are used to identify chemically relevant
orbitals. For near-term quantum hardware, active spaces are typically limited to 8-20 spatial
orbitals (corresponding to 16—40 spin orbitals), requiring approximately the same number of

qubits after mapping [35].

Hamiltonian Mapping and Qubit Encoding

The second-quantized electronic Hamiltonian constructed from the selected active
space is mapped onto qubits using standard fermion-to-qubit transformations, such as Jordan—
Wigner or Bravyi—Kitaev mappings. Symmetry exploitation, including particle-number
conservation and spin-parity symmetries, enables qubit tapering, reducing the total qubit
requirement by 2—6 qubits depending on the system. For example, an active space with 20

spin orbitals can often be reduced from 20 to ~14-16 qubits after symmetry reduction [33].

Quantum Algorithm Selection

Hybrid quantum-—classical algorithms are chosen based on accuracy and hardware
constraints. The Variational Quantum Eigensolver (VQE) is employed for ground-state energy
calculations, targeting convergence thresholds of 10-3-10-4 Hartree. For excited states,
extensions such as state-averaged VQE or equation-of-motion VQE (EOM-VQE) are applied.
Quantum Phase Estimation (QPE) is discussed as a future approach for high-precision energies,
requiring fault-tolerant hardware and circuit depths exceeding 106 logical gates [18,22-24].

Ansatz and Circuit Optimization

Parameterized ansatze are selected to balance chemical expressiveness and circuit
depth. Chemically motivated ansatze such as UCCSD or its truncated variants (e.g., UpCCGSD)
are used, with parameter counts typically ranging from 50 to 300. Adaptive methods (ADAPT-
VQE) are employed to construct problem-specific circuits, often reducing circuit depth by 30—
50% compared to fixed ansatze. Initial parameter values are seeded using classical Hartree—
Fock or CASSCF amplitudes to accelerate convergence.

315



Scientiae Radices, 4(4), 307-325 (2025)

Quantum Hardware Execution and Error Mitigation

Quantum circuits are executed on both noiseless simulators and real NISQ devices with
gate fidelities in the range of 99.5-99.9%. Measurement shot counts of 103-105 per
expectation value are used to control statistical error below ~1 mHartree. Error mitigation
strategies include readout calibration, symmetry verification, zero-noise extrapolation, and
measurement grouping, which together can reduce total energy errors by a factor of 2-5

relative to unmitigated results [37,38].

Classical Post-Processing and Validation

Quantum-computed energies and wavefunctions are validated against classical high-
level methods such as CASSCF or CCSD(T) for reduced models, with acceptable deviations
typically within 1-2 kcal*mol-1. For binding or reaction studies, quantum results are combined
with classical free-energy methods (MM/PBSA or thermodynamic integration) to obtain

chemically relevant observables.

Integration into the Drug Discovery Workflow

Validated quantum-enhanced results are reintegrated into the drug discovery pipeline
for ligand ranking, lead optimization, and metabolism prediction. Performance is benchmarked
against purely classical workflows in terms of accuracy, computational cost, and scalability.
Reporting includes explicit disclosure of active-space size, qubit count, circuit depth, number
of parameters, and achieved energy errors to ensure reproducibility and meaningful

comparison across studies.

Quantitative Criteria for Active-Space Selection

Active-space selection is guided by explicit numerical thresholds derived from
preliminary classical electronic-structure calculations. Natural orbitals obtained from Hartree—
Fock, DFT, or CASSCF calculations are analyzed, and orbitals with occupation numbers
significantly deviating from closed-shell values are selected. In practice, orbitals with natural
occupation numbers in the range 0.02—-1.98 are included in the active space, while orbitals with
occupations >1.98 (doubly occupied) or <0.02 (virtual) are excluded. For automated selection,
the Atomic Valence Active Space (AVAS) method is employed to include orbitals with significant
overlap (typically >10-15%) with predefined atomic valence orbitals relevant to the chemical
problem. Alternatively, orbital entanglement analysis is used, where orbitals with single-orbital
entropy values exceeding ~0.1 are identified as strongly correlated and retained. To ensure
feasibility on near-term quantum hardware, the final active space is typicall restricted to 8-20
spatial orbitals (corresponding to 16—40 spin orbitals), resulting in a comparable nhumber of
qubits after fermion-to-qubit mapping and symmetry reduction [35-36].

316



Scientiae Radices, 4(4), 307-325 (2025)

Computational Results and Implications

Hybrid quantum—classical simulations reported in the literature demonstrate that near-
term quantum algorithms can reproduce chemically meaningful trends for small molecular
systems and reduced models of transition-metal complexes relevant to drug discovery.
Benchmark studies using the Variational Quantum Eigensolver (VQE) on noisy intermediate-
scale quantum (NISQ) hardware show that ground-state energies for small molecules and
active-site fragments can be obtained with errors on the order of a few millihartree to a few
kilocalories per mole when compared with high-level classical references, depending on active-
space size, circuit depth, and error-mitigation strategy. For strongly correlated systems, such
as iron—porphyrin and FeMoco fragments, quantum approaches are able to capture qualitative
features of electronic structure, including spin-state ordering, that are challenging for standard
density functional approximations. Although present hardware limits simulations to reduced
active spaces, these results indicate that quantum methods scale more favorably with
increasing electronic complexity than exact classical treatments. When integrated into drug
discovery workflows, quantum-derived energies and wavefunctions can enhance the
description of metal-center reactivity, enzyme catalysis, and ligand-binding interactions,
complementing classical DFT and QM/MM approaches. Overall, current results confirm that
quantum computing does not yet replace established computational chemistry methods, but
it already provides a viable and systematically improvable framework for treating strongly
correlated electronic problems that are central to future applications in drug discovery and

development.

Quantum Computers in Drug Discovery & Development

Quantum computers operate directly on quantum states, enabling a natural
representation of electronic wave functions. This allows algorithms such as VQE to estimate
molecular ground-state energies with accuracy that is less dependent on empirical
approximations than conventional DFT methods. “Algorithms like the Variational Quantum
Eigensolver (VQE) and Quantum Phase Estimation (QPE) can compute the ground-state energy

of molecules, a critical step in predicting stability and reactivity [15,16,17-18].
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Molecular Simulation & Quantum Chemistry

a. Traditional computers struggleto simulate complex molecules dueto exponential scaling.

b. Quantum computers can directly model electronic structures and molecular
interactions, enabling accurate prediction of chemical properties.

c. This accelerates identification of promising drug candidates.

d. At the heart of drug discovery is understanding how a drug molecule interacts with a
biological target (like a protein or enzyme).

e. This requires simulating electronic structures, bonding, and chemical reactions at the
atomic level.

f. Classical computers use approximations (like Density Functional Theory, DFT), but for
large molecules these calculations become impossibly complex because the nhumber of

interactions grows exponentially.

Simulation of the FeMoco Enzyme (Nitrogenase)

The FeMoco (iron—molybdenum cofactor) enzyme is responsible for nitrogen fixation in
nature (turning atmospheric nitrogen into ammonia). Simulating FeMoco is extremely difficult
for classical computers due to its complex electron interactions [19-21]. A quantum computer,
using VQE, has been demonstrated (IBM & Google research) to better approximate its
electronic structure. This kind of simulation can be extended to drug molecules binding to

protein active sites, helping design drugs with better binding affinity [22-25].

FeMoco is hard for classical computers

a. Many electrons, many orbitals: The FeMoco active site has multiple metal centers (Fe,
Mo, S clusters) with strong electron correlation.

b. Exponential scaling: Classical methods like Full Configuration Interaction (FCI) scale
exponentially with the number of orbitals; approximations (DFT, coupled cluster)
break down for such strongly correlated systems.

Quantum approach: Variational Quantum Eigensolver (VQE)

Regarding Quantum parta parameterized quantum circuit prepares a trial wavefunction
for the molecule’s electronic structure [26-28]. Latera classical optimizer updates the circuit
parameters to minimize the expected energy (w(6)|H|w(B)). Then it works like Quantum
hardware can naturally encode the full electronic state (which is huge for classical computers)
with a polynomial number of qubits [29]. The results so far areIBM, Google, and academic
groups have demonstrated proof-of-concept simulations of fragments of FeMoco, achieving

better approximations than comparable classical resources [30].
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Extending to drug discovery

Drug—target binding involves with Accurate binding energies and Conformational flexibility
of the drug and protein active site. Solvent effects point of view Quantum algorithms like VQE
(and more advanced ones such as Quantum Phase Estimation, g-DRIFT, or quantum machine
learning models) can:

a. Compute highly accurate interaction energies of drug molecules with protein active sites.

b. Model transition states and reaction pathways (important for enzyme inhibitors).

c. Provide better potential energy surfaces than current DFT or MM/GBSA approximations.

Because quantum computers can natively represent the molecular wavefunction, they
could, at scale, give drug developers a much more faithful picture of how a small molecule
binds to a protein or enzyme site leading to:

a. Better ranking of candidate molecules (affinity prediction).
b. Rational design of modifications to improve potency or selectivity.
¢. Reduced reliance on trial-and-error wet-lab screening [31].

Present & near-term picture

Current quantum hardware is “noisy intermediate scale” (NISQ): tens to hundreds of
qubits, limited coherence. Hybrid quantum-—classical workflows (like VQE) are the most
promising now. Early industry pilots (e.g., pharmaceutical companies partnering with IBM,
Google, Quantum) are testing quantum algorithms on small drug-like fragments and active-

site models as shown in Table 2.

Table 2. Comparison of Classical and Quantum (VQE) Approaches for Molecular Simulation

Aspect Classical Simulation Quantum (VQE) Simulation
Scaling Exponential with system size Polynomial with qubits
Accuracy for FeMoco Approximations break down Can represent full correlated state
Drug Binding Force fields / DFT Direct quantum-mechanical binding

Simulation approximations energies
Stage Mature Early but rapidly advancing

3.8 Role of Quantum Computers in medicine

Quantum computing in medicine is a rapidly growing research area, and while still in
early stages, it holds huge potential to transform healthcare. The other two key areas of
quantum technology are quantum communication, which focuses on ultra-secure information
transfer using the principles of quantum entanglement and quantum key distribution, and
quantum sensing, which leverages quantum states to achieve measurements of unprecedented
precision in fields like navigation, medical imaging, and environmental monitoring. Together,

these three areas computing, communication, and sensing are forming the backbone of the
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so-called second quantum revolution. Unlike the first, which gave us transistors, lasers, and
MRI machines, this new wave is expected to transform industries by harnessing the unique
properties of superposition, entanglement, and quantum coherence at a practical scale.
Quantum computers will be able to simulate a key structure of Cytochrome P450, an enzyme

found in humans, with higher accuracy in less time than classical computers [32,33].

Cytochrome P450 (CYP450) enzymes are heme-containing monooxygenases involved in
drug metabolism and biosynthesis.
a. The active site is a heme iron coordinated by a porphyrin ring and axial ligands (often
cysteine).
b. It binds and activates Oz and transfers it to substrates a reaction very sensitive to
electronic structure.
c. Understanding the spin states, intermediate species (Fe(III)/Fe(IV)=0), and ligand
binding is critical for drug design and toxicity prediction [32,33].
Classical quantum chemistry (DFT, multireference methods) gives insights, but for the
highly correlated iron—oxo centre (like in FeMoco) approximations can miss key states.

Quantum approach for CYP450 active site

The key cluster of the CYP450 active site (e.g., the heme + Fe + cysteine + substrate
fragment) and map it to a quantum algorithm [34,35].

a) Hamiltonian building:

a. Choose an appropriate active space (e.g., Fe - d orbitals + porphyrin n orbitals
+ substrate orbitals).

b. Derive the electronic Hamiltonian in second quantization.

b) Quantum algorithm:
a. Use VQE on a quantum processor to find ground and excited states.
b. Calculate potential energy surfaces for different spin and oxidation states.
c. Predict reaction barriers for O2 activation or substrate hydroxylation.

c) Classical optimizer:
a. Classical computer tunes the quantum circuit parameters.

b. Combine with QM/MM to include the protein environment as shown in Table 3.
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Table 3. Classical vs Quantum (VQE) Approaches to Transition-Metal Chemistry

Problem Classical Approach Quantum Approach (VQE)
Electronic correlation ~ Multireference CI but limited Larger active spaces, direct correlated
(iron—oxo states) to small active spaces wave function
Spin-state energetics Often DFT-dependent, Can directly compute singlet/triplet/quintet
Drug metabolism may miss predict states
Predictions Empirical or approximate More accurate transition states for
QM/MM substrate oxidation

Pipeline (visual idea)
Protein structure (CYP450)
— Extract active site + substrate fragment
— Build molecular Hamiltonian
— Encode into qubits (Jordan—Wigner / Bravyi—Kitaev mapping) [26,27]
— Quantum circuit (VQE)
— Energies, spin states, reaction barriers
— Feed back into drug design (predict metabolism, design inhibitors)
This is exactly analogous to the FeMoco case, but now for an enzyme relevant to drug
metabolism. Pipeline Representation of Protein structure (CYP450) as shown in Figure 8.

S
2o B[
S

Protein Active site + Quantum Simulation Drug Prediction
Structure Substrate fragment

Figure 8. Pipeline Representation of Protein structure (CYP450)

Current status
e Academic groups have done DFT + VQE style benchmarks on small heme analogues
(like iron porphyrin complexes) on today’s hardware.
e Full CYP450 active site simulations are still future work because of qubit and error-
correction limitations, but the methodology is established [36,37,38-39].

Conclusions
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1. Bits are the foundation of today’s classical computers: simple, reliable, deterministic.
Qubits are the building blocks of quantum computers: complex, probabilistic, and vastly more
powerful for certain specialized tasks.Quantum molecular simulation allows researchers to
study drug—target interactions with unprecedented accuracy, at present it is a cutting down
trial-and-error lab work.

2. Quantum computing is emerging as a transformative tool in pharmaceutical research.
By enabling highly accurate simulation of molecular structures, protein—ligand interactions,
and reaction pathways, quantum computers can significantly reduce the time and cost required
for early-stage drug discovery. Their ability to handle complex combinatorial problems allows
faster screening of drug candidates, optimization of molecular properties, and prediction of
adverse effects, which are often challenging for classical computers.

3. Although practical, large-scale quantum computers are still under development, early
demonstrations using hybrid quantum—classical approaches (such as VQE and QAOA) already
show promising improvements in molecular modelling and lead optimization. As hardware
scales and error rates drop, quantum computing is expected to complement traditional
computational chemistry and AI methods, accelerating the journey from concept to clinic.
Ultimately, this technology could shorten development timelines, lower R&D costs, and enable

the discovery of safer and more effective therapies.
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