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 Abstract: Quantum chemistry plays a crucial role in advancing 
fundamental understanding of chemical processes and driving 
innovation in energy, medicine, and materials science. Recent 
progress in quantum computing has opened new possibilities 
for molecular simulations that are beyond the practical limits 
of classical approaches. Academic studies have demonstrated 
hybrid Density Functional Theory (DFT) and Variational 
Quantum Eigensolver (VQE) benchmarks on small transition-
metal systems, such as iron porphyrin and heme analogues, 
using current noisy intermediate-scale quantum (NISQ) 
hardware. Although full-scale simulations of complex 
biological systems such as the complete Cytochrome P450 
(CYP450) active site remain a long-term goal due to limitations 
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in qubit numbers, coherence times, and error correction, the 
underlying methodologies are now well established. At 
present, quantum chemistry applications in drug discovery 
remain largely experimental, and widespread practical medical 
impact is expected to require further technological advances 
over the next 5–10 years. Nevertheless, quantum software 
and algorithm development for chemical applications is 
progressing rapidly. This perspective summarizes recent 
advances in quantum computing algorithms, hardware, and 
software relevant to chemistry, and critically discusses the 
remaining challenges and opportunities for applying quantum 
computing to chemical problems, with particular emphasis on 
drug discovery and development. 
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Introduction 

Quantum mechanics provides the fundamental framework for describing matter and 

energy at atomic and subatomic length scales, where classical physics is no longer adequate. 

At these scales, particles exhibit wave–particle duality, quantized energy levels, and 

probabilistic behavior, phenomena that are successfully captured by the mathematical 

formalism of quantum theory [1,2]. Rather than following deterministic trajectories, 

microscopic systems are described by wavefunctions whose measurable properties are 

obtained statistically through repeated observations. 

Quantum chemistry applies the principles of quantum mechanics to chemical systems 

in order to describe electronic structure, chemical bonding, spectroscopy, and reaction 

dynamics. Established computational methods such as Hartree–Fock theory, density functional 

theory (DFT), and post–Hartree–Fock approaches have enabled accurate predictions for a wide 

range of molecular properties [3,4]. However, the computational cost of these methods 

increases rapidly with system size, particularly for strongly correlated systems such as 

transition-metal complexes, metalloenzymes, and excited-state processes. As a result, 

practical simulations often rely on approximations that can limit predictive accuracy [5,6]. 

Quantum computing offers a fundamentally different approach to molecular simulation 

by representing electronic wavefunctions directly on quantum hardware. Unlike classical bits, 

quantum bits (qubits) exploit superposition and entanglement, allowing quantum computers 
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to encode and manipulate many-body quantum states more naturally [11,12]. This has 

motivated the development of hybrid quantum–classical algorithms, such as the Variational 

Quantum Eigensolver (VQE), which are designed to operate on near-term noisy intermediate-

scale quantum (NISQ) devices [15,18]. 

While quantum computers are still in an early stage of development, proof-of-concept 

studies have demonstrated their potential for quantum chemistry applications, including small-

molecule simulations and transition-metal model systems [16-18]. These advances suggest 

that quantum computing may eventually complement classical electronic-structure methods, 

particularly in areas where strong electron correlation limits the accuracy of conventional 

approaches. In this context, quantum computing is increasingly viewed as a promising tool for 

molecular modeling and, in the longer term, for applications in drug discovery and 

development [19-21]. 

Classical computers:  Classical computers operate using bits, which can be either a 0 or 1. 

They process information step by step using algorithms, with each bit independent from the 

others. This makes them reliable and well-suited for most everyday tasks, but they can become 

slow when solving highly complex problems.In a classical computer, the bit is the most basic 

unit of information. Each bit can exist in only one of two states: 0 (off/low voltage) and 1 

(on/high voltage) as shown in Figures 1 and 2. These bits are the building blocks of all digital 

operations [7-8]. Here’s the role they play in classical computer operation: 

1. Information Representation 

a. Numbers, text, images, and even videos are ultimately broken down into 

sequences of bits (binary code). 

b. For example, the letter A in ASCII is represented as 01000001. 

2. Data Processing 

a. Bits flow through circuits made of transistors (tiny switches). 

b. Logic gates (AND, OR, NOT, etc.) use bits as inputs to produce outputs, 

enabling arithmetic operations, comparisons, and decision-making. 

3. Memory and Storage 

a. Bits are stored in memory cells (RAM, hard drives, SSDs). 

b. Each cell records a 0 or 1, and groups of bits form larger units like bytes (8 

bits). 

4. Communication 

a. Bits are transmitted as electrical signals, light pulses (in fibre optics), or radio 

waves for data transfer between systems. 

5. Deterministic Operation 
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a. At any point, a bit has a definite state (either 0 or 1). 

b. This deterministic nature makes classical computers predictable and reliable but 

also limits their ability to handle extremely complex problems compared to 

quantum computers. 

Bits are the foundation of classical computing, serving as the universal language that 

allows computers to represent, process, store, and transmit all kinds of information. In classical 

computing the bits of binary are represented by 1 and O. Let us consider there is a two-bit 

space to represent four combinations. Suppose it is a three-bit space we can represent 8 

combinations. Hence there is n-bit space, we can represent 2n combinations. But to change 

the states of the data from 00 to 10 as a sequence of operations (00, 01, 11, 10) the 

conventional process required four (04) clock pulses [9,10]. 

 

Figure 1. Conventional data representations 

 

 

Figure 2. Low and High Conventional data representations 

Quantum computers: Quantum computers on the other hand, use qubits. Unlike bits, 

qubits can exist in a superposition of 0 and 1 at the same time. Qubits also interact through a 

property called entanglement, which allows them to share information and influence one 

another In a quantum computer, the basic unit of information is the qubit (quantum bit). While 

it serves a similar purpose to a classical bit, its behaviour is very different because it is 

governed by the principles of quantum mechanics. In classical computing, representing all 

possible configurations requires sequential processing and large memory resources, leading to 

increased computational time and storage demands for complex problems. In Quantum 
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computing to represent the data in qubits we are using one fundamental technique, that is 

superimposition [11,12]. Here a quantum state is represented as a linear combination of 

conventional computing states. The following diagram shows the basic representation of 

Qubits 0 and 1 as shown in Figures 3 and 4. 

 

Figure 3. Quantum bit Representation 

 

 

Figure 4. Quantum bit combination Through superimposition 

To represent the combination of these two-bits that is (00, 01, 11 and 10) 

representation in the perspective of quantum computing is, suppose we represent the same 

thing in the layered structure [12,14]. That is at the same time or instinct all the combinations 

of 2-bits are possible as shown in Figures 5 and 6.  

 

Figure 5. Two-dimensional view of layer structure 
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Figure 6. Multi-dimensional view of layer structure 

Fundamental Concepts of Quantum Computing 

1. Information Representation 

a) A classical bit can only be 0 or 1. 

b) A qubit can exist in a superposition of both states at once. 

c) Mathematically:∣ψ⟩=α∣0⟩+β∣1⟩ 

where α and β are probability amplitudes with ∣α∣2+∣β∣2=1 

2. Parallelism in Computation 

a) A system of n qubits can represent 2n states simultaneously. 

b) This parallelism allows quantum computers to process huge amounts of information, 

useful for tasks like optimization, cryptography, and molecular simulations. 

3. Entanglement for Correlation 

a) Entanglement links qubits so that the state of one instantly affects the state of 

another, even across distance. 

b) This correlation is stronger than anything achievable with classical bits, enabling 

faster problem-solving and secure communication. 

4. Quantum Interference 

a) Quantum algorithms rely on interference to amplify correct outcomes and cancel 

wrong ones. 

b) This “steering” of probabilities gives quantum algorithms their efficiency advantage. 

5. Probabilistic Nature 

a) When measured, a qubit collapses to either 0 or 1 with probabilities ∣α∣2 and ∣β∣2 

b) Before measurement, qubits hold multiple possibilities, which is the source of 

quantum computational power [13,14,15]. 
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Qubits allow quantum computers to store and process information in ways far beyond 

classical bits. Through superposition, entanglement, and interference, qubits make it possible 

to solve problems that would take classical computers millions of years. Because of these 

features, quantum computers can explore many possible solutions simultaneously instead of 

sequentially as shown in Figure 7 and comparison of bits vs qubits as shown in Table 1.  This 

parallelism is what gives them the potential to solve certain types of problems such as drug 

discovery, cryptography, and optimization much faster than classical computers [13,14].  

 

Figure 7. Transformation of conventional to quantum computing 

 

Table 1. Classical Bit vs. Quantum Bit (Qubit): Feature-by-Feature Overview 

Feature Classical Bit Quantum Bit (Qubit) 

Basic state 

Representation 

Parallelism 

Correlation 

Computation 

Storage 

Scalability 

Measurement 

Technology 

Examples of 

use 

Either 0 or 1 

Binary values (0 = off, 1 = on) 

Represents one state at a time 

Independent unless 

programmed 

Deterministic, step-by-step 

1-bit stores either 0 or 1 

n bits = n pieces of information 

Directly reveals stored value 

Transistors, silicon circuits 

Word processing, web browsing, 

standard computation 

Can be 0, 1, or a superposition of both 

Quantum state 

Represents many states simultaneously 

Can be entangled (strongly correlated) 

Probabilistic, uses interference to find solutions 

1 qubit stores a combination of 0 and 1  

(more information capacity) 

n qubits = 2n2^n states simultaneously 

Collapses to 0 or 1 with certain probabilities 

Superconductors, trapped ions, photons, etc. 

Quantum simulation, cryptography, 

optimization, drug design 
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Computational Framework 

The quantum-enhanced drug discovery workflow integrates classical electronic-

structure methods with near-term quantum algorithms [15,16]. Initially, biologically relevant 

targets such as enzyme active sites or ligand–receptor complexes are identified and pre-

processed using classical techniques, including molecular docking, molecular dynamics, and 

density functional theory (DFT), to generate optimized geometries and representative 

conformations. From these calculations, a chemically meaningful active space is constructed 

by selecting orbitals with significant deviation from full or empty occupation, typically guided 

by automated approaches such as atomic valence active space (AVAS) selection or orbital 

entanglement measures [35,36]. The resulting second-quantized electronic Hamiltonian is 

mapped onto qubits using standard fermion-to-qubit transformations (e.g., Jordan–Wigner or 

Bravyi–Kitaev mappings), with symmetry exploitation employed to reduce qubit counts. 

Ground- and low-lying excited-state energies are then evaluated using hybrid quantum–

classical algorithms, primarily the Variational Quantum Eigensolver (VQE) with chemically 

motivated or adaptive ansätze. Quantum circuits are executed on simulators and available 

noisy intermediate-scale quantum (NISQ) hardware with appropriate error-mitigation 

strategies. Finally, quantum-derived energies and wavefunctions are validated against classical 

high-level methods and reintegrated into the drug discovery pipeline for ligand ranking, 

reaction-barrier estimation, and metabolism prediction [31,34]. 

Drug Discovery Target and Computational Objective 

The biological target is defined as a chemically relevant subsystem, such as an enzyme 

active site or ligand–receptor binding pocket, extracted from experimental crystal structures 

(resolution ≤ 2.5 Å) or high-quality homology models. The primary computational objectives 

include prediction of relative binding energies (ΔE or ΔG), spin-state energetics, and reaction 

barriers (ΔE‡) with a target accuracy of ~1 kcal·mol⁻¹, which is typically required for 

chemically meaningful ranking of drug candidates. 

Classical Pre-Screening and Model Preparation 

Initial structure preparation and conformational sampling are performed using classical 

molecular docking and molecular dynamics (MD) simulations. MD trajectories of 50–100 ns are 

generated to identify representative conformations of the binding site. Geometry optimizations 

of the chemically active region are carried out using DFT (e.g., B3LYP or PBE0 functionals with 

a double-ζ or triple-ζ basis set), providing reference orbitals and electron densities for 

subsequent quantum calculations. QM/MM partitioning is applied where the quantum region 
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typically contains 50–150 atoms, while the remaining protein environment is treated classically 

[32]. 

Active-Space Construction for Quantum Simulation 

Selection of the active space is guided by quantitative criteria derived from classical 

electronic-structure calculations. Orbitals with natural orbital occupation numbers deviating 

significantly from 2.0 or 0.0 (typically >1.98 or <0.02 excluded) are prioritized. In practice, 

orbitals with occupations in the range of ~0.02–1.98 are considered active. Automated 

approaches such as the Atomic Valence Active Space (AVAS) method or orbital entanglement 

analysis (based on single-orbital entropy values >0.1) are used to identify chemically relevant 

orbitals. For near-term quantum hardware, active spaces are typically limited to 8–20 spatial 

orbitals (corresponding to 16–40 spin orbitals), requiring approximately the same number of 

qubits after mapping [35]. 

Hamiltonian Mapping and Qubit Encoding 

The second-quantized electronic Hamiltonian constructed from the selected active 

space is mapped onto qubits using standard fermion-to-qubit transformations, such as Jordan–

Wigner or Bravyi–Kitaev mappings. Symmetry exploitation, including particle-number 

conservation and spin-parity symmetries, enables qubit tapering, reducing the total qubit 

requirement by 2–6 qubits depending on the system. For example, an active space with 20 

spin orbitals can often be reduced from 20 to ~14–16 qubits after symmetry reduction [33]. 

Quantum Algorithm Selection 

Hybrid quantum–classical algorithms are chosen based on accuracy and hardware 

constraints. The Variational Quantum Eigensolver (VQE) is employed for ground-state energy 

calculations, targeting convergence thresholds of 10⁻³–10⁻⁴ Hartree. For excited states, 

extensions such as state-averaged VQE or equation-of-motion VQE (EOM-VQE) are applied. 

Quantum Phase Estimation (QPE) is discussed as a future approach for high-precision energies, 

requiring fault-tolerant hardware and circuit depths exceeding 10⁶ logical gates [18,22-24]. 

Ansatz and Circuit Optimization 

Parameterized ansätze are selected to balance chemical expressiveness and circuit 

depth. Chemically motivated ansätze such as UCCSD or its truncated variants (e.g., UpCCGSD) 

are used, with parameter counts typically ranging from 50 to 300. Adaptive methods (ADAPT-

VQE) are employed to construct problem-specific circuits, often reducing circuit depth by 30–

50% compared to fixed ansätze. Initial parameter values are seeded using classical Hartree–

Fock or CASSCF amplitudes to accelerate convergence. 
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Quantum Hardware Execution and Error Mitigation 

Quantum circuits are executed on both noiseless simulators and real NISQ devices with 

gate fidelities in the range of 99.5–99.9%. Measurement shot counts of 10³–10⁵ per 

expectation value are used to control statistical error below ~1 mHartree. Error mitigation 

strategies include readout calibration, symmetry verification, zero-noise extrapolation, and 

measurement grouping, which together can reduce total energy errors by a factor of 2–5 

relative to unmitigated results [37,38]. 

Classical Post-Processing and Validation 

Quantum-computed energies and wavefunctions are validated against classical high-

level methods such as CASSCF or CCSD(T) for reduced models, with acceptable deviations 

typically within 1–2 kcal·mol⁻¹. For binding or reaction studies, quantum results are combined 

with classical free-energy methods (MM/PBSA or thermodynamic integration) to obtain 

chemically relevant observables. 

Integration into the Drug Discovery Workflow 

Validated quantum-enhanced results are reintegrated into the drug discovery pipeline 

for ligand ranking, lead optimization, and metabolism prediction. Performance is benchmarked 

against purely classical workflows in terms of accuracy, computational cost, and scalability. 

Reporting includes explicit disclosure of active-space size, qubit count, circuit depth, number 

of parameters, and achieved energy errors to ensure reproducibility and meaningful 

comparison across studies. 

Quantitative Criteria for Active-Space Selection 

Active-space selection is guided by explicit numerical thresholds derived from 

preliminary classical electronic-structure calculations. Natural orbitals obtained from Hartree–

Fock, DFT, or CASSCF calculations are analyzed, and orbitals with occupation numbers 

significantly deviating from closed-shell values are selected. In practice, orbitals with natural 

occupation numbers in the range 0.02–1.98 are included in the active space, while orbitals with 

occupations >1.98 (doubly occupied) or <0.02 (virtual) are excluded. For automated selection, 

the Atomic Valence Active Space (AVAS) method is employed to include orbitals with significant 

overlap (typically >10–15%) with predefined atomic valence orbitals relevant to the chemical 

problem. Alternatively, orbital entanglement analysis is used, where orbitals with single-orbital 

entropy values exceeding ~0.1 are identified as strongly correlated and retained. To ensure 

feasibility on near-term quantum hardware, the final active space is typicall restricted to 8–20 

spatial orbitals (corresponding to 16–40 spin orbitals), resulting in a comparable number of 

qubits after fermion-to-qubit mapping and symmetry reduction [35-36]. 



Scientiae Radices, 4(4), 307-325 (2025) 
 

317 
 

 

Computational Results and Implications 

Hybrid quantum–classical simulations reported in the literature demonstrate that near-

term quantum algorithms can reproduce chemically meaningful trends for small molecular 

systems and reduced models of transition-metal complexes relevant to drug discovery. 

Benchmark studies using the Variational Quantum Eigensolver (VQE) on noisy intermediate-

scale quantum (NISQ) hardware show that ground-state energies for small molecules and 

active-site fragments can be obtained with errors on the order of a few millihartree to a few 

kilocalories per mole when compared with high-level classical references, depending on active-

space size, circuit depth, and error-mitigation strategy. For strongly correlated systems, such 

as iron–porphyrin and FeMoco fragments, quantum approaches are able to capture qualitative 

features of electronic structure, including spin-state ordering, that are challenging for standard 

density functional approximations. Although present hardware limits simulations to reduced 

active spaces, these results indicate that quantum methods scale more favorably with 

increasing electronic complexity than exact classical treatments. When integrated into drug 

discovery workflows, quantum-derived energies and wavefunctions can enhance the 

description of metal-center reactivity, enzyme catalysis, and ligand–binding interactions, 

complementing classical DFT and QM/MM approaches. Overall, current results confirm that 

quantum computing does not yet replace established computational chemistry methods, but 

it already provides a viable and systematically improvable framework for treating strongly 

correlated electronic problems that are central to future applications in drug discovery and 

development. 

Quantum Computers in Drug Discovery & Development 

Quantum computers operate directly on quantum states, enabling a natural 

representation of electronic wave functions. This allows algorithms such as VQE to estimate 

molecular ground-state energies with accuracy that is less dependent on empirical 

approximations than conventional DFT methods. ”Algorithms like the Variational Quantum 

Eigensolver (VQE) and Quantum Phase Estimation (QPE) can compute the ground-state energy 

of molecules, a critical step in predicting stability and reactivity [15,16,17-18]. 
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Molecular Simulation & Quantum Chemistry 

a. Traditional computers struggle to simulate complex molecules due to exponential scaling. 

b. Quantum computers can directly model electronic structures and molecular 

interactions, enabling accurate prediction of chemical properties. 

c. This accelerates identification of promising drug candidates. 

d. At the heart of drug discovery is understanding how a drug molecule interacts with a 

biological target (like a protein or enzyme). 

e. This requires simulating electronic structures, bonding, and chemical reactions at the 

atomic level. 

f. Classical computers use approximations (like Density Functional Theory, DFT), but for 

large molecules these calculations become impossibly complex because the number of 

interactions grows exponentially. 

Simulation of the FeMoco Enzyme (Nitrogenase) 

The FeMoco (iron–molybdenum cofactor) enzyme is responsible for nitrogen fixation in 

nature (turning atmospheric nitrogen into ammonia). Simulating FeMoco is extremely difficult 

for classical computers due to its complex electron interactions [19-21]. A quantum computer, 

using VQE, has been demonstrated (IBM & Google research) to better approximate its 

electronic structure. This kind of simulation can be extended to drug molecules binding to 

protein active sites, helping design drugs with better binding affinity [22-25]. 

FeMoco is hard for classical computers 

a. Many electrons, many orbitals: The FeMoco active site has multiple metal centers (Fe, 

Mo, S clusters) with strong electron correlation. 

b. Exponential scaling: Classical methods like Full Configuration Interaction (FCI) scale 

exponentially with the number of orbitals; approximations (DFT, coupled cluster) 

break down for such strongly correlated systems. 

Quantum approach: Variational Quantum Eigensolver (VQE) 

Regarding Quantum parta parameterized quantum circuit prepares a trial wavefunction 

for the molecule’s electronic structure [26-28]. Latera classical optimizer updates the circuit 

parameters to minimize the expected energy ⟨ψ(θ)|H|ψ(θ)⟩. Then it works like Quantum 

hardware can naturally encode the full electronic state (which is huge for classical computers) 

with a polynomial number of qubits [29]. The results so far areIBM, Google, and academic 

groups have demonstrated proof-of-concept simulations of fragments of FeMoco, achieving 

better approximations than comparable classical resources [30]. 
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Extending to drug discovery 

Drug–target binding involves with Accurate binding energies and Conformational flexibility 

of the drug and protein active site. Solvent effects point of view Quantum algorithms like VQE 

(and more advanced ones such as Quantum Phase Estimation, q-DRIFT, or quantum machine 

learning models) can: 

a. Compute highly accurate interaction energies of drug molecules with protein active sites. 

b. Model transition states and reaction pathways (important for enzyme inhibitors). 

c. Provide better potential energy surfaces than current DFT or MM/GBSA approximations. 

Because quantum computers can natively represent the molecular wavefunction, they 

could, at scale, give drug developers a much more faithful picture of how a small molecule 

binds to a protein or enzyme site leading to: 

a. Better ranking of candidate molecules (affinity prediction). 

b. Rational design of modifications to improve potency or selectivity. 

c. Reduced reliance on trial-and-error wet-lab screening [31]. 

Present & near-term picture 

Current quantum hardware is “noisy intermediate scale” (NISQ): tens to hundreds of 

qubits, limited coherence. Hybrid quantum–classical workflows (like VQE) are the most 

promising now. Early industry pilots (e.g., pharmaceutical companies partnering with IBM, 

Google, Quantum) are testing quantum algorithms on small drug-like fragments and active-

site models as shown in Table 2. 

Table 2. Comparison of Classical and Quantum (VQE) Approaches for Molecular Simulation 

Aspect Classical Simulation Quantum (VQE) Simulation 

Scaling 

Accuracy for FeMoco 

Drug Binding 

Simulation 

Stage 

Exponential with system size 

Approximations break down 

Force fields / DFT 

approximations 

Mature 

Polynomial with qubits 

Can represent full correlated state 

Direct quantum-mechanical binding 

energies 

Early but rapidly advancing 
 

3.8 Role of Quantum Computers in medicine  

Quantum computing in medicine is a rapidly growing research area, and while still in 

early stages, it holds huge potential to transform healthcare. The other two key areas of 

quantum technology are quantum communication, which focuses on ultra-secure information 

transfer using the principles of quantum entanglement and quantum key distribution, and 

quantum sensing, which leverages quantum states to achieve measurements of unprecedented 

precision in fields like navigation, medical imaging, and environmental monitoring. Together, 

these three areas computing, communication, and sensing are forming the backbone of the 
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so-called second quantum revolution. Unlike the first, which gave us transistors, lasers, and 

MRI machines, this new wave is expected to transform industries by harnessing the unique 

properties of superposition, entanglement, and quantum coherence at a practical scale. 

Quantum computers will be able to simulate a key structure of Cytochrome P450, an enzyme 

found in humans, with higher accuracy in less time than classical computers [32,33]. 

Cytochrome P450 (CYP450) enzymes are heme-containing monooxygenases involved in 

drug metabolism and biosynthesis. 

a. The active site is a heme iron coordinated by a porphyrin ring and axial ligands (often 

cysteine). 

b. It binds and activates O₂ and transfers it to substrates a reaction very sensitive to 

electronic structure. 

c. Understanding the spin states, intermediate species (Fe(III)/Fe(IV)=0), and ligand 

binding is critical for drug design and toxicity prediction [32,33]. 

Classical quantum chemistry (DFT, multireference methods) gives insights, but for the 

highly correlated iron–oxo centre (like in FeMoco) approximations can miss key states. 

Quantum approach for CYP450 active site 

The key cluster of the CYP450 active site (e.g., the heme + Fe + cysteine + substrate 

fragment) and map it to a quantum algorithm [34,35]. 

a) Hamiltonian building: 

a. Choose an appropriate active space (e.g., Fe - d orbitals + porphyrin π orbitals 

+ substrate orbitals). 

b. Derive the electronic Hamiltonian in second quantization. 

b) Quantum algorithm: 

a. Use VQE on a quantum processor to find ground and excited states. 

b. Calculate potential energy surfaces for different spin and oxidation states. 

c. Predict reaction barriers for O₂ activation or substrate hydroxylation. 

c) Classical optimizer: 

a. Classical computer tunes the quantum circuit parameters. 

b. Combine with QM/MM to include the protein environment as shown in Table 3. 
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Table 3. Classical vs Quantum (VQE) Approaches to Transition-Metal Chemistry 

Problem Classical Approach Quantum Approach (VQE) 

Electronic correlation 

(iron–oxo states) 

Spin-state energetics 

Drug metabolism 

Predictions 

Multireference CI but limited 

to small active spaces 

Often DFT-dependent,  

may miss predict 

Empirical or approximate 

QM/MM 

Larger active spaces, direct correlated 

wave function 

Can directly compute singlet/triplet/quintet 

states 

More accurate transition states for 

substrate oxidation 
 

 

Pipeline (visual idea) 

Protein structure (CYP450)  

→ Extract active site + substrate fragment  

→ Build molecular Hamiltonian  

→ Encode into qubits (Jordan–Wigner / Bravyi–Kitaev mapping) [26,27] 

→ Quantum circuit (VQE)  

→ Energies, spin states, reaction barriers  

→ Feed back into drug design (predict metabolism, design inhibitors) 

This is exactly analogous to the FeMoco case, but now for an enzyme relevant to drug 

metabolism. Pipeline Representation of Protein structure (CYP450) as shown in Figure 8. 

 

Figure 8. Pipeline Representation of Protein structure (CYP450) 

Current status 

• Academic groups have done DFT + VQE style benchmarks on small heme analogues 

(like iron porphyrin complexes) on today’s hardware. 

• Full CYP450 active site simulations are still future work because of qubit and error-

correction limitations, but the methodology is established [36,37,38-39]. 

 

Conclusions 
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1. Bits are the foundation of today’s classical computers: simple, reliable, deterministic. 

Qubits are the building blocks of quantum computers: complex, probabilistic, and vastly more 

powerful for certain specialized tasks.Quantum molecular simulation allows researchers to 

study drug–target interactions with unprecedented accuracy, at present it is a cutting down 

trial-and-error lab work. 

2. Quantum computing is emerging as a transformative tool in pharmaceutical research. 

By enabling highly accurate simulation of molecular structures, protein–ligand interactions, 

and reaction pathways, quantum computers can significantly reduce the time and cost required 

for early-stage drug discovery. Their ability to handle complex combinatorial problems allows 

faster screening of drug candidates, optimization of molecular properties, and prediction of 

adverse effects, which are often challenging for classical computers. 

3. Although practical, large-scale quantum computers are still under development, early 

demonstrations using hybrid quantum–classical approaches (such as VQE and QAOA) already 

show promising improvements in molecular modelling and lead optimization. As hardware 

scales and error rates drop, quantum computing is expected to complement traditional 

computational chemistry and AI methods, accelerating the journey from concept to clinic. 

Ultimately, this technology could shorten development timelines, lower R&D costs, and enable 

the discovery of safer and more effective therapies. 
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