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 Abstract: The course of the reactions between ethyl oleate and aromatic 

nitrile N-oxides was reexamined under the laboratory conditions. 
The reaction course was explained on the basis of the DFT 

quantumchemical calculations. It was found that independently of 
the reaction protocol, in any case the expected 2-isoxazolines are 
not formed. Instead of this, respective diarylfuroxanes were isolated 

from post-reaction mixtures. 
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Introduction  

2-Isoxazolines play an important role in medicinal chemistry. This group of 

compounds constitutes an important molecular segment of many biologically active products 

[1-3]. Derivatives containing isoxazole/isoxazoline fragments have biological effects such as: 

anticancer [4-12], anti-inflammatory [13-15], analgesic activity [16], anti-Alzheimer's disease 

[15,17,18], anti-asthmatic [19,20], antidiabetic [21-23], antituberculosis [24], as well as 

antithrombotic activity [10], antioxidant [16,25-27], antibacterial [28-31], antifungal [32-34] 

and anti-insecticidic [35]. Due to weak nitrogen-oxygen bonds and aromatic character, 

isoxazoles and isoxazolines are particularly valuable intermediates in many methods of 

synthesizing bioactive compounds, because such a ring system allows for quite easy 

modification of substituents in their ring structures [5]. Their unique structure allows them to 

bind with high affinity to separate receptors, which enables the development of innovative 

drugs with original therapeutic applications [36]. 

The most universal method for the preparation of the 2-isoxazoline molecular 

systems are the [3+2] cycloaddition reactions between nitrile N-oxides and alkenes [37-44]. 

Some years ago, Kumar and coworkers [45] described the protocol for the 

preparation of 2-isoxazolines via [3+2] cycloaddition scheme based on the ethyl oleate as 

the 2π-electron component and arylonitrile N-oxides as three atom components (TACs) 

(Scheme 1). 

 

 

Scheme 1. 

The described protocol exhibits however many doubts. First, the Authors specified, 

that the reaction is realized at 100oC in boiling ethanol (sic!) at normal pressure. Next, 
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according to the presented data, all reactions were completed after 2-3h. On the other hand, 

it is generally known, that aromatic nitrile N-oxides are generally moderately reactive. Even 

in the presence of the electrophilically activated alkenes they react rather slowly [46]. 

Finally, most benzonitrile N-oxide, [3+2] cycloadditions are realized not regiospecifically, 

even in the case of electrophilic alkenes 2π-electron component. When non-activated alkenes 

are used as the 2π-electron component, the cycloaddition always proceeds with the low 

regiocontrol [46,47]. Thus, the presented procedure is not very reliable. Therefore, it was 

decided on the comprehensive reexamination of the title processes. We hope, that our study 

shed new light on the questions of the reactivity of the oleic acid esters in the [3+2] 

cycloaddition processes. 

 

Results and discussion  

Within the first stage of our research, we repeated point by point the procedure 

described by Kumar and coworkers [45]. Of course, it was impossible to realize this protocol 

at 100oC in boiling ethanol, because its b.p. is equal 78oC. We examined the reaction with 

the participation of the benzonitrile N-oxide (1a) and its substituted methoxy and nitro 

analogues (1b and 1f respectively). The reaction progress was monitored using HPLC 

technique. Unfortunately, in any cases, no cycloaddition product was detected. All examined 

reactions lead to respective nitrile oxime dimers (diarylfuroxanes) independently of the 

nature of the substituent in the aryl ring of the nitrile-oxide (Scheme 2). 

 

Scheme 2. 

Next, we performed attempts for the search of alternative protocol for these 

reactions, based on the other [3+2] cycloaddition procedures previously verified [48-50]. All 

attempts for the preparation of 2-isoxazoline analogs on this way were not successful. Only 

respective furoxane dimers were detected in the postreaction mixtures. So, the synthetic 

protocol published by Kumar and coworkers [45] includes fundamental errors and 

inaccuracies, and should be considered as completely non-repeatable. 
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For better understanding of the extremely low reactivity of the ethyl oleate (2) in the 

[3+2] cycloaddition to nitrile N-oxides, the full exploration of the energetic profiles of the 

process was performed. For this purpose, the results of the B3LYP/6-311G(d) 

quantumchemical calculations were applied. Within these calculations, the presence of the 

solvent in the reaction environment was simulated using PCM algorithm [51-56]. Both 

theoretically possible regioisomeric pathways (Scheme 3) of the [3+2] cycloaddition  

involving the parent benzonitrile N-oxide (1a) and the ethyl oleate (2) were considered in 

the ether and ethanol solutions. 

 

Scheme 3. 

Our DFT computational study shows clearly that the nature energy profiles for both 

considered pathways are similar, and typical for the one-step [3+2] cycloaddition. In 

particular, in the simulated ethereal solution, between valleys of reactants and products, two 

critical points were detected and verified: the pre-reaction molecular complex (MCA and 

MCB respectively) and the transition state (TSA and TSB respectively) (Figure 1). The one-

step nature of analyzed cycloaddition was fully verified by the analysis of respective IRC 

trajectories. 

In the initial phase of reaction, the interactions between starting molecules in the 

ethereal solution lead to the formation of the pre-reaction molecular complexes MCA and 

MCB. This process is barrierless and is accompanied with the reduction of the enthalpy of 

the reaction system about 1.2–18kcal/mol. The entropic factor determines however positive 

values of the Gibbs free energy of  1a+2→MCA and 1a+2→MCB transformations. This 

excludes the possibility of the existence of mentioned intermediates as structures stable from 

thermodynamical point of view. It should be underlined that no new s-bonds are formed 

within the MCs. In the framework of the pre-reaction complex, substructures of addents 

adopt orientations determined by further regiodirection of the intermolecular interactions. 

So, detected structures should be classified as orientation complexes. Next, no electron 
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density transfer can be observed within MCs. In the consequence, these intermediates 

should not be considered as charge-transfer (CT) complexes [57,58]. 

 

 

Fig. 1. Views of critical structures of the [3+2] cycloaddition reactions between benzonitrile N-oxide 
(1a) and the ethyl oleate (2) in the Et2O solution according to the B3LYP/6-311G(d) (PCM) 
calculations. 

The next reaction phase is a transformation of the respective MC to TS. Itis 

interesting that,  in the contrast to the data reported by Kumar and coworkers [45], the 
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computed activation parameters suggest evidently low regioselectivity within this reaction, 

characterized by isoentalpic nature of both possible activation barriers. Next, the observed 

Gibbs free energies of the activation are high, which suggest a preference for the formation 

of diarylfiruxane instead of expected cycloadducts (Table 2). Within TSA and competitive 

TSB, two new single bonds are formed – C3-C4 and C4-C5. The development of both new 

bonds is always very similar. So, both optimized transition states should be classified as 

rather synchronous. Very similar is the image of considered the model reaction in the more 

polar ethanolic solution. 

Table 1. Energetical parameters for the [3+2] cycloaddition reactions between benzonitrile N-oxide 
(1a) and the ethyl oleate (2) in the Et2O and EtOH solutions according to the B3LYP/6-311G(d) (PCM) 

calculations (H and G are in kcal/mol; S are in cal/molK). 

Solvent Path Transition H G S 

Et2O A 1a+2→MCA -1.8 7.2 -30.0 
  1a+2→TSA 21.4 33.9 -42.1 
  1a+2→3a -30.9 -15.9 -50.6 

 B 1a+2→MCB -1.2 6.1 -24.4 
  1a+2→TSB 21.4 34.4 -43.6 

  1a+2→4a -30.9 -15.0 -53.6 

EtOH A 1a+2→MCA -1.1 5.3 -21.4 

  1a+2→TSA 21.6 33.9 -41.1 
  1a+2→3a -31.2 -15.7 -52.0 

 B 1a+2→MCB -1.1 5.4 -21.6 
  1a+2→TSB 21.6 34.1 -41.8 
  1a+2→4a -31.2 -15.4 -52.8 

Table 2. Key parameters of critical structures for the [3+2] cycloaddition reactions between 

benzonitrile N-oxide (1a) and the ethyl oleate (2) in the Et2O and EtOH solutions according to the 

B3LYP/6-311G(d) (PCM) calculations (H and G are in kcal/mol; S are in cal/molK). 

Solvent Structure 
Interatomic distances [Å] GEDT 

O1-N2 N2-C3 C3-C4 C4-C5 C5-O1 [e] 

Et2O 1a 1.214 1.162     

 2    1.337   
 MCA 1.216 1.161 4.970 1.337 3.728 0.00 
 TSA 1.233 1.215 2.258 1.378 2.343 0.08 

 3a 1.398 1.286 1.523 1.540 1.460  
 MCB 1.216 1.161 5.007 1.337 3.746 0.00 

 TSB 1.233 1.215 2.259 1.378 2.342 0.08 
 4a 1.398 1.286 1.523 1.540 1.460  

EtOH 1a 1.216 1.161     
 2    1.337   

 MCA 1.219 1.160 4.993 1.337 3.757 0.00 
 TSA 1.236 1.214 2.257 1.377 2.359 0.09 
 3a 1.401 1.286 1.522 1.540 1.463  

 MCB 1.219 1.160 5.072 1.337 3.756 0.00 
 TSB 1.236 1.214 2.258 1.377 2.357 0.09 

 4a 1.401 1.286 1.522 1.540 1.462  
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Experimental Part 
General 

HPLC analyses were done using a Knauer device with a UV-VIS detector (LiChrospher 

18-RP 10 µm column, eluent: 80%v methanol). M.p. values were measured on the Boetius 

apparatus and are uncorrected. 

 

Reaction procedure A 

A mixture of respective aromatic oxime 2 (2.2 mmol), ethyl oleate 1 (2.0 mmol) and 

chloramine-T trihydrate (3.0 mmol) in the solvent (EtOH, Et2O) (30 ml) was refluxed on a 

water bath for 3 hours. The progress of the reaction was monitored by TLC and HPLC. The 

post-reaction mixture was filtered and evaporated to dryness. The organic residue was 

washed by water, and recrystallized. The diarylfuroxanes obtained were identified via 

comparison of the mp’s with respective parameters from the literature and using HPLC 

technique based on samples prepared according to the known procedures [50]. 

 

Reaction procedure B 

An erlenmeyer flask containing 10 ml of THF was placed in an ice bath. Then ethyl 

oleate 1 (2.0 mmol) and hydroxamoyl chloride (2.2 mmol) were added and stirred for 10 

min. Then K2CO3 (1 mmol) was dosed in small portions during 30 min period. After that time, 

the ice bath was removed. The mixture was left for 24 h with constant stirring. The solvent 

was evaporated and remaining solid was mixed with diethyl ether and filtered to remove 

insoluble side products. The ether was removed under vacuum, and the remaining crude 

product was washed with light petroleum ether and recrystallized. The diarylfuroxanes 

obtained were identified via comparison of the m.p. with respective parameters from the 

literature and using HPLC technique based on samples prepared according to the known 

procedures [50]. 

 

DFT Computational details 

All calculations reported in this paper were performed using the “Ares” infrastructure 

at the “Cyfronet” computational center in Cracow. The B3LYP functional with the 6-311G(d) 

basis set included in the GAUSSIAN package [59] was used. All optimized critical structures 

were verified by vibrational frequency analysis to determine whether they constitute minima 

or maxima on the potential energy surface (PES). All transition structures showed a single 

imaginary frequency (ν), whereas reactants, intermediates and products had none. The 

intrinsic reaction coordinate (IRC) path was traced in order to check the energy profiles 
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connecting each transition structure to associated minima of the proposed mechanism. The 

calculations were carried out for the simulated presence of benzene or dietyl ether as the 

reaction mediums (the PCM model [51] was used). All calculations were performed for 298 K 

and 1 atm pressure. 

 

Conclusions 

Our comprehensive, experimental and quantumchemical studies on the [3+2] 

cycloaddition reactions of the ethyl oleate to arylonitrile N-oxide clearly show, that under 

protocols typical for nitrile oxide cycloadditions, the title reaction does not lead  to the 

expected 2-isoxazoline analogs. In all cases,  of the applied procedure, only respective 

diarylfuroxanes were detected in the postreaction mixtures.  These results were rationalized 

based on the results from the DFT quantumchemical calculations. In particular, our DFT 

study clearly indicates very low reaction regioselectivity and a favored character of the 

formation of furoxanes as dimers of nitrile oxides instead of 2-isoxazolines. 
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