
Scientiae Radices, 1, 46-68 (2022) 
 

46 
 

   Review 
    

 

 
    

The extraordinary gravity of three atom 4π-components and 
1,3-dienes to C20-nXn fullerenes; a new gate to the future of 
Nano technology  
    
Seyyed Amir Siadati(1)

, Solmaz Rezazadeh(2) 
  

 (1)Department of Chemistry, Qaemshahr Branch, Islamic Azad University, 
Qaemshahr, Iran,  
(2)Department of Chemistry, Tehran Markaz Branch, Islamic Azad University, Tehran, 
Iran 
 

  Correspondence to: Chemistry_2021@yahoo.com 
  
 Abstract: A quick glance to the adsorption, sensing, and energy storage 

abilities of C20 fullerene and its derivatives indicate that this small 
carbon cluster may have extraordinary properties which would make 
it a key part of the future of Nano actuators and Nano machines. For 
example, in the case of the gravity of three atom 4π-components 
(TACs) to these carbon cages, it should be noted that; the rate 
constants (K)s of the reaction of C20 fullerene with 1,3-butadiene 
(Diels-Alder (DA) process), and with 2-furan nitrile oxide ([3+2] 
cycloaddition (32CA process)) are 2.51(1011) M-1 s-1, and 1.4(107)M-1 
s-1, respectively. However, the rate constant of the 32CAreaction 
between norbornadiene and 3,4-dihydro isoquinoline-N-oxide is 
about 2.56(10-5) M-1 s-1 (both by DFT and by experimental results). 
This simple comparison could show the extraordinary gravity of 
some TACs and dienes to C20 fullerenes. 
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Introduction 

It is generally accepted that the catalyst aided [3+2] cycloaddition (32CA) reaction is a 

powerful tool for synthesizing different types of heterocyclic small molecules, and bioactive 

or pharmaceutical drugs [1-5]. This reaction was designed as a catalyst-free approach at 
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firsts [6-8]. However, in most of the cases, the rate as well as the yield of the reaction was 

low [9-17]. Beside this, there is a concern of emergence of different impurities with high 

percentage during this reaction in absence of catalysts. Indeed, in a catalyst-free 32CA 

process, the relative substituents configuration within addents moieties, stereospecificity is 

lost, when the mechanism turns from a one-step route to a stepwise one. Subsequently, 

parallel reaction channels leading to the emergence of stereoisomers and some other 

impurities will be opened [18-20]. Obviously, such problems in the stepwise routes are the 

result of emergence the diradical or zwitterionic acyclic intermediates.  

In one hand, the use of catalysts for 32CA process results in some benefits like higher 

reaction rate, more yield, with higher purity in view of stereoisomers. On the other hand, it 

might bring some concerns like the need of preparative or flash chromatography, (especially 

in the case of metal organic complexes), and more cost (due to the need of applying more 

expensive complexes and solvents) [21-24]. Thus, choosing the reagents and the procedures 

for scheming a 32CA reaction have always been challenging for researchers [25-27].  

In the recent decades, the knowledge of mankind about Nanotechnology has been widely 

changed. Somehow, with the aid of this interesting field, significant improvements in 

different areas such as computer systems, communications, and even space machines have 

occurred [28-30]. Actually, functionalization of nano particles, is one of the most important 

requirements for development of nanotechnology [31,32]. Thus, many precious attempts 

have been done by scientists to reach to this goal [33-35]. Researches were ongoing until in 

some of the recent reports, an extraordinary tendency of some fullerene especially the 

smallest one (C20 fullerene and its derivatives, to three atom 4π-components (TACs) or 

dienes were observed [36-40]. In this paper, these reports about such attraction have been 

reviewed, in a quick glance. 

 

A brief history of [3+2] cycloadditions 

To the best of our knowledge, the first reports about the TACs comes back to 1883, 

discovering the diazoaceticester by Theodor Curtius [41]. Also, the first 32CAreaction was 

reported by Buchner (a member of Curtius’ group) in 1888 [42]. He reacted methyl acrylate 

with methyl diazoacetate. Then, he successfully isolated 2-pyrazoline which was formed by 

the rearrangement of initially formed 1-pyrazoline. Five years later, Ueber [43], and 

Pechmann [44], reported two new 32CAreactions by alkyl azides, and diazoalkanes, 

respectively. In 1890s, Beckmann [45], and Werner - Buss (1894) [46] discovered 

azomethine oxides (nitrones), and nitrile oxides, respectively. About, forty years later (1938), 

Smith published the first review article about 32CA, introducing this reaction as a new 
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approach for synthesizing five-membered ring heterocyclic compounds [47]. However, the 

use of this reaction as an approach of synthesis was thought to be limited [48]. 

Subsequently, several researchers focused on synthesizing heterocyclic compounds via 32CA 

reactions [49,50]. For example, Rolf Huisgen published a number of reports about the 32CA 

reaction as a powerful tool for synthesizing heterocycles [51,52]. Moreover, he classified 

TACs and the 32CA processes [53].  

 

Scheme 1. Huisgen's “concerted” mechanism for 32CA reaction 

The first proposals about the mechanistic aspect of the 32CAs were made by Huisgen in 

1960's decade, along with the synthetic investigations on it. In his paper, he suggested a 

single-step one-step mechanism (Scheme 1) for the reaction which made that stereospecific 

[54]. Huisgen’s theory about the 32CA reaction mechanism was supported by Woodward–

Hofmann’s theory about pericyclic reactions [55], and it was further aided by Fukui’s theory 

defining the Frontier Molecular Orbitals (FMOs) [56] and recently by the molecular electron 

density theory (MEDT) [57].  

In 1968, Raymond Firestone suggested another mechanism for the process that was in 

contrast with Huisgen’s theory [58]. Firestone hypothesized that this reaction proceeds via a 

diradical intermediate (Scheme 2) leading the reaction to be stepwise [58–60]. 

Subsequently, in 1976, Huisgen published a review article entitled “Concerted nature of 1,3-

dipolar cycloadditions and the question of diradical intermediates” that insisted on the one-

step nature of the reaction mechanism [61].  

 

Scheme 2. Firestone's diradical mechanism for 32CA reaction 
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Then, Kendall Houk in cooperation with Firestone at 1985, emphasized that an experimental 

example of 32CAreaction was stereospecific indicating that the reaction mechanism was one-

step [62]. 

During decades, scientists continuously reported the examples of this reaction with 

stereospecific outcomes supporting the one-step mechanisms [63–65]. After those reports, 

the mechanism of 32CA was mainly accepted to be asynchronous one-step [66]. Finally, in 

1986, Huisgen and Mlostoń discovered that in the case of the 32CA reaction between an 

electron-rich thiocarbonyl ylide and a highly electron-poor tetracyanoethene, the reaction 

could proceed via a zwitterionic intermediate route (Scheme 3) dividing the reaction into a 

two-step one [67,68].  

 

Scheme 3. The Stepwise mechanism through the zwitterionic intermediate 

After those reports about that interesting issue, attempts to find more examples of two-step 

32CAs were made; however, most of the reported examples referred to thiocarbonyl ylides 

[69–71]. Also, it should be noted that in some especial cases, stepwise 32CA processes using 

the other TACs were observed. Sauer (in 1999), for instance, reported a non-stereospecific 

32CA reaction of a group of azomethine ylide derivatives and enamines [72]. As another 

example, Luis Domingo (in 2004) presented an example of a 32CA reaction in which both 

stepwise and one-step pathways were in a close competition [73]. Moreover, Kuznetsov 

(2006), published a comprehensive review paper in which several reports about the 32CAs 

were discussed [74]. 

In the recent years, hot debates on the mechanism of 32CA raised, due to the importance of 

the stereospecificity of this process. For instance, in 2013, Firestone used some examples 

with strong reasoning and reiterated that the 32CA process might be a two-step diradical 

one [75]. Jasiński found that the 32CA reaction between a highly electro-negative dinitro 

alkene (gem-dinitroethene) and a nitrone with a high potentially resonance-stabilizing 

structure [(Z)-C,N-diphenylnitrone] was stepwise in toluene as solvent [76]. Mlostoń (2015) 

introduced two new experimental examples of diradical 32CAs [77,78], and in some other 

reports, we have published examples of three-steps zwitterionic 32CA reactions [79,80]. 

Today, numerous examples by different scientists all around the world, show that the 
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concern of emergence of stereo impurities via the stepwise pathways for the 32CA processes 

is real [81-100]. Moreover, the accuracy of theoretical studies on the mechanism and kinetics 

of 32CA process have been confirmed by comparative quantum chemical investigations [101-

115].  

 

Current application of C20 fullerenes  

C20 fullerene is the smallest known carbon cage which has been firstly hypothesized by 

scientists like Wahl et al. [116], Ke et al.  [117], and Taylor et al [118]. Then, reports about 

its gas phase synthesis were revealed by researchers like Prinzbach in Nature magazine at 

2000 [119], or Podlivaev [120]. After that, studies on the stability [121-124] of this cluster 

were performed. Also, in parallel with those studies, investigations on the other properties of 

this small carbon cage, such as its electronic [125], magnetic moment formation [126], its 

memory effects on the other surfaces [127], energy storage [128], electron transport [129], 

and optoelectronic behavior [130] were performed. Moreover, Baei's works [131,132] and 

Siadati et al systematic studies on especial adsorption [37-40], sensing [133-136], and nano-

sized actuating applications [137] might be of important reports in this especial field. 

However, there are several precious investigations on the adsorption [138-141], and sensor 

application [142-147] of this smallest carbon cage, by other researchers.  

A quick glance to the adsorption, sensing, and energy storage application of C20 fullerene 

and its derivatives indicate that this small carbon cluster may have extraordinary properties 

which would make it a key part of the future nano actuators and machines. Also, the 

powerful gravity of this into the dipoles as well as dienes leads to a fast and facile catalyst-

free cycloaddition between these species. It seems that such facile functionalization in one 

hand and the especial electronic properties on the other hand; make it the candidate for 

advancing the field of nano technology. 

 

Examples of fast functionalization of C20 fullerenes by [3+2] cycloadditions  

As mentioned before, the yields and the reaction rate parameters (like the rate constant) of 

usual 32CAs are low (especially in absence of catalysts). But the products of this reaction are 

precious due to formation of new five-membered rings. Many attempts have been made to 

improve the reaction rate and yield; while, in most cases, researchers have been forced to 

use different types of catalyst. Thus, in the case of functionalization of C20 fullerene family by 

the 32CA (Scheme 4), the interesting point is; that the reaction rate (and other 

thermodynamic and kinetic parameters) are extremely high.  
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Scheme 4. The ultrafast 23-DC reaction between the C20 fullerene and alkenes 

That is, we suggest that the 32CA (as well as DA reaction) become a candidate for usual and 

experimental functionalization of fullerenes (especially C20 fullerene family).  Table 1, 

presented some of the experimental as well as theoretical data of the usual 32CA reactions 

in comparison of theoretical results for 32CA process on C20 fullerene family.  

Table 1. The key thermodynamic and kinetic parameters for reactions with the participation of C20 

fullerene. 

Entry Unsaturated TAC or diene 
ΔG# 

(kcal mol-1) 

K 

(M-1 s-1) 

ΔH# 

(kcal mol-1) 

ΔS# 

(kcal mol-1K-1) 

 

Ref 

1 

 
C20 1,3-butadiene  1.89 2.51(1011) 11.60 -3.26(10-2) [36] 

2 C20 
4-pyridine 

nitrile oxide  
9.09 1.03(106) 2.63 -21.6(10-3) [37] 

3 C20 
2-furan nitrile 

oxide 
13.3 1.1(103) 5.41 –2.47(10-2) [38] 

4 
C20 

 

2-furan nitrile 

oxide ( 
7.96 1.4(107) 2.41 –1.86(10-2) [38] 

5 C18NB 
4-pyridine 

nitrile oxide) 
14.60 1.19(102) 11.20 -11.6(10-3) [39] 

6 C20 HNO3 17.40 - 14.70 - [40] 

7 
C20 

 
Benzene 21.72 7.42(10-4) 14.29 - [148] 

8 B12N12 Methyl azide  16.75 5.25(101) 10.21 -21.94(10-3) [151] 

9 C20 HCNO 12.48 3.76(102) 2.64 -4.10(10-2) [152] 

10 C20 HN3  15.77 2.14 4.79 -4.70(10-2) [152] 

11 N-ethylmaleimide 
Benzonitrile 

oxide 

17.60 (DFT) 

17.82(exp) 
- 17.90 -1.0(10-3) [106] 

12 ethyne azide 
25.5 (DFT) 

25.2(exp) 
- 22.40 -10.7(10-3) [109] 

13 Norbornadiene 

3,4-dihydro 

iso- quinoline-

N-oxide 

23.7 (DFT) 
23.7(exp) 

2.56(10-5) 22.90 -2.1(10-3) [110] 

 
At the first glance to Table 1, two issues could be clearly concluded. The first one is the 

accuracy of the theoretical calculation (the very good agreement between experimental and 
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theoretical results). For example data in entries 11 to 13 show that the results of DFT 

method for the Gibbs free energy are much closed to the experimental outcomes. It could 

confirm the trustability of such theoretical methods in prediction of kinetics and 

thermodynamics of 32CA reactions. Also, the second issue is the very slow reaction rates of 

usual 32CA processes (like 2.56(10-5) M-1 s-1 in the case of entry 13). But, as given in entries 

1 to 10, the rate constant of the reaction between C20 fullerene and its derivatives with TACs 

(especially nitrile oxides compared to azides) are extremely higher compared to the usual 

unsaturated ones. For example, the rate constant of the reaction of C20 fullerene with 1,3-

butadiene (entry 1, DA process), and with 2-furan nitrile oxide (entry 4, DC process) are 

2.51(1011) M-1 s-1, and 1.4(107)M-1 s-1, respectively; while, the rate constant of the 

32CAprocess between norbornadiene and 3,4-dihydro isoquinoline-N-oxide is about 2.56(10-

5) M-1 s-1 (both for DFT and for experimental results). This simple comparison could show the 

extraordinary gravity of some TACs and dienes to C20 fullerenes. 

 

Conclusion 

In one hand, several reports during decades confirm that the reaction rates of almost all 

catalyst-free [3+2] cycloaddition processes are very slow with low yields. On the other hand, 

the concern of stepwise mechanistic channels leading to emergence of unwanted products 

makes unfavorable the catalyst-free type of this reaction. That is, most of the practical 32Cas 

are reported with the aid of catalysts for gaining higher yield and lower impurity profile. But, 

nowadays, the recent studies show that the especial gravity of C20 fullerene (compared to 

the usual unsaturated bonds) toward TACs or diene species results in very fast 32CA, or DA 

reactions. For example, the rate constant of the reaction of C20 fullerene with 1,3-butadiene 

(DA process), and with 2-furan nitrile oxide (DC process) are 2.51(1011) M-1 s-1, and 

1.4(107)M-1 s-1, respectively. While, the rate constant of the 32CAprocess between 

norbornadiene and 3,4-dihydro isoquinoline-N-oxide is about 2.56(10-5) M-1 s-1 (both for DFT 

and for experimental results). This simple comparison could show the extraordinary gravity 

of some TACs and dienes to C20 fullerenes. Such processes do not require catalysts, heat, or 

beams of light. Thus, it would be logical that the 32CA, or DA reactions could be a fast, and 

facile method for functionalization of such carbon based nano sized compounds.  
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